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A 4×4 transfer matrix is derived to evaluate the response of a multi-layered infinitely
long elastic cylinder imbedded in a fluid and enclosing another fluid, to a given
one-dimensional pressure excitation, or alternatively to evaluate the acoustic pressure
distribution excited by the radial velocity component of the radiating surface. It is shown
that the transfer matrix can be effectively used to obtain the scattering coefficient and noise
reductiion of a multi-layered cylinder for the case of normal incidence of a plane wave.
Expressions for several particular cases, such as monostatic back scattering, scattering from
a rigid cylinder and a soft cylinder, a solid and a fluid cylinder, are presented. It is shown
analytically that the expressions for scattering coefficient for the general case of a hollow
cylinder and the particular cases of a fluid cylinder and a solid cylinder lead to the same
expressions obtained by using a normal mode solution. Numerical results for the scattering
form function and noise reduction of a two-layer infinite cylinder are given to illustrate the
effect of layer material characteristics, variation of thickness of either of the constituent
layers, cylinder dimensions, and ambient media. Finally, a four-layer hose has been
analyzed in order to demonstrate the computational advantage of the transfer matrix
method.
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1. INTRODUCTION

Design of algorithms that estimate the target parameters by means of a cylindrical sonar
system calls for the knowledge and understanding of response of the cylindrical shell
housing the transducer array as well as scattering and transmission of incident acoustic
wave. The incident acoustic wave could be an echo, radiated noise of the target, or that
from the vehicle’s own propeller that induces the self-noise to the system. Besides, the
magnitude of turbulent wall pressure fluctuations that are transmitted through the
cylindrical shell and sensed by the transducer inside has a significant bearing on the signal
to noise ratio and demands precise estimation for the design of an efficient target detection
system.

The studies concerning these phenomena for the case of cylinders have been made by
contemporary researchers using the classical normal mode solutions, resonance scattering
theory, the Sommerfeld–Watson transformation and a T-matrix approach. The classical
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normal mode solution of evaluating response of the cylindrical shell to a given pressure
excitation and associated wave propagation involves expressing the displacements and
stresses in terms of the scalar and vector potential functions and formulating the
characteristic equations in terms of their amplitudes in individual layers by satisfying the
interfacial and boundary conditions [1–5]. Resonance scattering adapted from nuclear
scattering theory has been used to obtain the scattered field and response to surface waves
by constructing the partial waves and obtaining the backgrounds and resonances from it
[6, 7]. The Sommerfeld–Watson transformation has been applied to the normal mode series
solution, and the resulting contour integrals are computed both by the saddle point method
and by summing residues over poles which correspond to the zeros of a 6×6 determinant
[8]. The T-matrix method consists of expanding the incident and scattered field quantities
in appropriate vector basis functions depending upon the problem. The known incident
field coefficients are related to unknown scattered field coefficients by means of a T-matrix
[9, 10]. The classical normal mode technique has been used to obtain the scattered field
due to a plane wave incident on a hollow cylinder [3] and a two-layered cylinder consisting
of a visco-elastic coating on a metallic cylinder [5], in which 6×6 and 10×10 matrices
have been formulated, respectively, to study acoustic scattering. The study of scattering
from multiple concentric cylindrical shells with annular fluid layers [11] has been carried
out essentially by using the 6×6 matrix developed for a single layer cylinder [7]. The
scattered field due to oblique incidence [12], and the relation between resonances and
surface waves in the scattering of oblique incident acoustic waves [13] have also been
analyzed by using the same approach.

For the cases of a single-layered cylinder and a two-layered cylinder, the normal mode
technique may seem to be appropriate. However, as the number of layers increases, the
algebra associated with the formulation of characteristic equations become cumbersome
(four characteristic equations for each additional layer) and the increase in the resultant
matrix size (the matrix size being given by (4n+2)× (4n+2), where n is number of layers)
makes computation of inverse or determinant of the coefficient matrix slower and some
times may even lead to numerical difficulties. On the other hand, the transfer matrix
approach which was originally proposed by Thomson [14] and followed by many others
[15–17] is best suited for the analysis of multi-layer walls and passive acoustical filters [18],
and is particularly suitable for digital computation.

In this paper, a 4×4 transfer matrix connecting the state variables on either side of the
multi-layered infinitely long cylinder has been derived to obtain the response of the shell,
and the scattering and transmission of a normally incident acoustic wave, in terms of
elements of the overall transfer matrix. The model uses exact equations of elastodynamics,
and construction of the solutions is made by using scalar and vector potentials. The
solutions for the scalar and vector potentials in each layer are given in terms of Bessel
functions. By using the interfacial conditions of continuity of pressure and radial velocity
between the layers and appropriate radiation impedances on the exterior and interior of
the multi-layered cylinder, explicit expressions for the response, scattering coefficient and
transmission coefficient are obtained.

Expressions for the evaluation of wave propagation parameters such as the scattering
coefficient and transmission coefficient in terms of elements of the transfer matrix have
been obtained and these expressions can be directly used for any number of layers by
noting that the elements of the final matrix are obtained after multiplication of the transfer
matrices of the constituent layers. Thus, the resultant matrix would remain a 4×4 matrix
irrespective of the number of layers.

Explicit expressions are given for the scattering form function and noise reduction in
terms of matrix elements. Several interesting special cases such as monostatic back
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scattering, scattering from a rigid cylinder and a soft cylinder, a solid cylinder and a fluid
cylinder are discussed.

Analytical comparison of the scattering coefficient obtained by using the present transfer
matrix is made with that obtained by using the normal mode solution [3] for the general
case of a hollow cylinder and the particular cases of a fluid cylinder and a solid cylinder
as the limiting cases. It is shown that both the methods lead to the same expressions if
one uses equivalent notations (which necessitated evaluation of the determinants by using
the matrix elements provided in the reference cited).

Expressions have also been derived to evaluate the response of the multi-layered cylinder
to a given pressure excitation on one of the faces, with consideration taken of the boundary
conditions of zero shear and appropriate radiation loading on the exposed faces. Similar
expressions would hold for the acoustic pressure excited by the radial velocity component
of the exposed surface.

Numerical examples are given for the case of a two layered cylinder consisting of a
visco-elastic layer backed by a metallic cylinder. This configuration is chosen to increase
understanding of the scattering behaviour of a multi-layer cylinder with damping material
as the outer layer. Some parametric studies for different sizes of the visco-elastic layer and
the metallic backing cylinder, with two different ambient fluids, have been carried out. In
the limiting case of large radii, it is shown that the results for the multi-layered cylinder
tend to those for a lined plate presented in reference [19].

2. BASIC EQUATIONS

The geometry considered for the present problem is shown in Figure 1. A plane wave
is incident normal to the axis of symmetry of the multi-layered cylindrical shell, made up
of m layers and having the inner and outer radii of each layer denoted by r'in and r'out , where
i denotes the ith layer. The axis of the cylinder shell is taken to be the z-axis of the
cylindrical co-ordinate system (r, u, z). The cylinder is imbedded in a fluid having density
r0 and sound speed c0 and encloses another fluid of density rm+1 and sound speed cm+1

inside of it. The topmost layer 1 and the bottommost layer m are in contact with the fluids.
The four relevant state variables, normal stress srr , shear stress tru , radial particle velocity
Vr and the circumferential particle velocity Vu at the two faces of the first layer are shown
in Figure 2.

Figure 1. Geometry of multi-layered infinite cylinder with different wave components.
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Figure 2. Co-ordinates and state variables at top and bottom faces of one layer of the multi-layered cylinder.

The two-dimensional components of the velocity vector V(r, u) satisfying the field
equation

V� =grad f+curl 8� (1)

are given by

Vr = 1f/1r+(1/r) 18z /1u, Vu =(1/r) 1f/1u− 18z /1r, (2, 3)

where f is the scalar potential and 8� is the vector potential. The radial stress srr and shear
stress tr,u are given by [20]

srr =−
2G
jv 61Vr

1r
+

m

1−2m 0Vr

r
+

1
r

1Vu

1u
+

1Vr

1r 17, tru =−
G
jv 01Vu

1r
−

Vu

r
+

1
r

1Vr

1u 1, (4, 5)

where G denotes the shear modulus, m the Poisson’s ratio, and v the circular frequency
of excitation. Substituting equations (2) and (3) in equations (4) and (5) yields

srr =−
2G
jv 612f

1r2 +
1
r

128z

1r 1u
−

1
r2

18z

1u
+

m

1−2m 012f

1r2 +
1
r

1f

1r
+

1
r2

12f

1u217, (6)

tru =−
G
jv 6201r 12f

1r 1u
−

1
r2

1f

1u1−
128z

1r2 +
1
r

18z

1r
+

1
r2

128z

1u2 7. (7)

By making use of the equations of motion [20]

G{div grad V� +[1/(1−2m)] grad div V� } = r 12V� /1t2, (8)

it can be shown that f and 8� in equations (2), (3), (6) and (7) satisfy the wave equations
[20]

G[2(1− m)/(1−2m)]92
ruf= r 12f/1t2, G92

ru8� = r 128� /1t2, (9, 10)

where 92
ru = 12/1r2 + (1/r) 1/1r+(1/r2) 12/1u2 is the Laplacian operator and r is the mass

density. With the time dependence of all state variables being exp(jvt), the space
dependence of f and 8� satisfy the Helmholtz equations

92
ruf+ k2

Lf=0, 92
ru8� + k2

T8� =0, (11, 12)



     103

where

k2
L =0vc2

L1
2

=
v2r

G
1−2m

2(1− m)
=

v2r

E
(1−2m) (1+ m)

(1− m)
, k2

T =0vc2
T1

2

=
v2r

G
, (13, 14)

and subscripts L and T denote longitudinal and transverse shear waves, respectively. cL ,
the speed of longitudinal waves, and cT , the speed of shear waves, are given by

c2
L =(G/r)2(1− m)/(1−2m), c2

T =G/r. (15)

In the outside ambient fluid medium, the incident pressure and scattered pressure can be
given by [2]

Pi (r, u, t)= s
a

n=0

on (−j)nJn (k0 r) cos (nu) ejvt, (16)

Ps (r, u, t)= s
a

n=0

on (−j)nbn H(2)
n (k0 r) cos (nu) ejvt. (17)

As this paper is concerned with scattering coefficients normalized with respect to the
incident wave, the amplitude of the incident wave in equation (16) has been taken to be
unity.

The pressure field in the interior fluid of the multi-layered cylinder is given by

Pm+1 (r, u, t)= s
a

n=0

on (−j)nFn Jn (km+1 r) cos (nu) ejvt. (18)

General solutions of equations (9) and (10), for use in the layers of the cylinder, can be
written as

f(r, u, t)= s
a

n=0

on (−j)n{An Jn (kL r)+Bn Yn (kL r)} cos (nu) ejvt, (19)

8z (r, u, t)= s
a

n=0

on (−j)n{Dn Jn (kT r)+En Yn (kT r)} sin (nu) ejvt, (20)

where k0 =v/c0, km+1 =v/cm+1, v is the circular frequency, and c0 and cm+1 are the speeds
of sound in the exterior and interior ambient fluid media, respectively. on =1 for n=0 and
on =2 for ne 1. Here, H(2)

n =Jn −jYn are Hankel functions of the second kind, Jn and Yn

are Bessel and Neumann functions of order n, respectively. bn , An , Bn , Dn , En and Fn are
the scattering coefficients. Evaluation of the scattering coefficients bn and Fn , and noise
reduction constitute the present problem.

3. DERIVATION OF THE TRANSFER MATRIX

Substituting equations (19) and (20) in equations (2), (3), (6) and (7), one can obtain
the state variables srr , tru , Vr and Vu for the first layer in terms of the constants An , Bn ,
Dn , En , and the inside and outside radii of the first layer.
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Defining the identities,

an,1 0An Jn (kL r)+Bn Yn (kL r), an,2 0An J'n (kL r)+Bn Y'n (kL r), (21, 22)

dn,1 0Dn Jn (kT r)+En Yn (kT r), dn,2 0Dn J'n (kT r)+En Y'n (kT r), (23, 24)

one can write the state variables as

Vr = s
a

n=0

on (−j)n0kL an,2 +
n
r

dn,1 1 cos (nu), (25)

Vu = s
a

n=0

−on (−j)n0kT dn,2 +
n
r

an,1 1 sin (nu), (26)

srr = s
a

n=0

− on (−j)n 2G
jv $k2

L6 n2

k2
Lr2 −

(1− m)
(1−2m)7an,1 −

kL

r
an,2 −

n
r2 dn,1 +

n
r

kT dn,2 % cos (nu),

(27)

tru = s
a

n=0

− on (−j)n 2G
jv $n

r2 an,1 −
n
r

kL an,2 +
kT

r
dn,2 +6k2

T

2
−

n2

r27dn,1 % sin (nu). (28)

The modal equations of the state variables can be written as

Vr,n =0kL an,2 +
n
r

dn,1 1, Vu,n =−0kT dn,2 +
n
r

an,2 1, (29, 30)

srr,n =−
2G
jv $k2

L6 n2

k2
Lr2 −

(1− m)
(1−2m)7an,1 −

kL

r
an,2 −

n
r2 dn,1 +

n
r

kT dn,2 %, (31)

tru,n =−
2G
jv $n

r2 an,1 −
n
r

kL an,2 +
kT

r
dn,2 +6k2

T

2
−

n2

r27dn,1 %. (32)

The modal equations of the state variables given above have been obtained by writing the
state variables in terms of modal components as

Vr = s
a

n=0

on (−j)nVr,n cos (nu), Vu = s
a

n=0

on (−j)nVu,n sin (nu), (33, 34)

srr = s
a

n=0

on (−j)nsrr,n cos (nu), tru = s
a

n=0

on (−j)nsrr,n sin (nu). (35, 36)

Solving equations (29–32) yields

dn,1 = (2/k2
T){−(jv/2G)tru,n +Vu,n /r+(n/r)Vr,n}, (37)

dn,2 = (2/k3
T){−(jv/2G) (n/r)srr,n +(n2/r2 − k2

T/2)Vu,n +(n/r2)Vr,n}, (38)

an,1 = {(jv/k2
TG)srr,n −(2n2/k2

Tr2)Vu,n r/n−2Vr,n /k2
Tr}, (39)

an,2 = {(jv/k2
TG) (n/kL r)tru,n −(2n/k2

TkL r2)Vu,n +(1−2n2/k2
Tr2)Vr,n /kL}. (40)
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With use made of the recurrence relations of Bessel functions, the constants An , Bn , Dn

and En can be obtained by solving simultaneously the system of equations (37–40).
At the exterior radius the state variables can be obtained from equations (29–32) and

are given by

Vr,n (rout )=$kL{An J'n (kL rout )+Bn Y'n (kL rout )}+
n
rout

{Dn Jn (kT rout )+En Yn (kT rout )}%, (41)

Vu,n (rout )=−$ n
rout

{An Jn (kL rout )+Bn Yn (kL rout )}+KT {Dn J'n (kT rout )+EnY'n (kT rout )}%, (42)

srr,n (rout )=−
2G
jv $−

k2
T

2 01−
F
r2

out1{An Jn (kL rout )+Bn Yn (kL rout )}

−
kL

rout
{An J'n (kL rout )+Bn Y'n (kL rout )}+

kT n
rout

{Dn J'n (kT rout )+En Y'n (kT rout )}

−
n
r2

out
{Dn Jn (kT rout )+En Yn (kT rout )}%, (43)

tru,n (rout )=−
2G
jv $ n

r2
out

{An Jn (kL rout )+Bn Yn (kL rout )}−
kL n
rout

{An Jn (kL rout )

+Bn Y'n (kL rout )}+
kT

rout
{Dn J'n (kT rout )+En Y'n (kT rout )}

+
k2

T

2 01−
F
r2

out1{Dn Jn (kT rout )+En Yn (kT rout )}%, (44)

where

F=2n2/k2
T. (45)

Substitution of the constants An , Bn , Dn and En into equations (41–44) (the rather lengthy
but straightforward algebraic details are omitted here), yields the following transfer matrix
relationship between the state vector at (rout , u, n) and that at (rin , u, n):

K L K L K Lsrr,n (rout ) A11 A12 A13 A14 srr,n (rin )
G G G G G Gtru,n (rout ) A21 A22 A23 A24 tru,n (rin )G G G G G G

Vu,n (rout )
=

A31 A32 A33 A34 Vu,n (rin )
. (46)

G G G G G G
Vr,n (rout ) A41 A42 A43 A44 Vr,n (rin )k l k l k l

Elements Ai j of this transfer matrix are given in Appendix A.

4. EVALUATION OF SCATTERING AND TRANSMISSION COEFFICIENTS OF
MULTI-LAYERED CYLINDER

Expressions for the transfer matrix elements given in Appendix A for the first layer can
be used in evaluating the transfer matrices of the successive layers 2 to m as well. Then
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the multi-layer system, comprising the exterior ambient medium ‘‘0’’, m successive layers
and the interior medium m+1, can be represented by an overall transfer matrix, as given
by

[S]0 = [A] [S]m , (47)

where

[A]= [A]1 [A]2 . . . [A]m . (48)

[A], the overall transfer matrix for the nth azimuthal mode, can be written as

K L K L K Lsrr,0,n A11 A12 A13 A14 srr,m,n

G G G G G Gtru,0,n A21 A22 A23 A24 tru,m,nG G G G G G
Vu,0,n

=
A31 A32 A33 A34 Vu,m,n

. (49)
G G G G G G

Vr,0,n A41 A42 A43 A44 Vr,m,nk l k l k l
The ambient media in contact with layers 1 and m being fluids, shear stresses on both the
exposed surfaces of the multi-layer system will be zero: i.e.,

tru,0,n = tru,m,n =0. (50)

The modal pressure and modal radial velocity on the exterior face are given by

P0,n = {Jn (k0 rout )+ bn H(2)
n (k0 rout )} cos (nu) ejvt, (51)

Vr,0,n =(j/r0 c0){J'n (k0 rout )+ bn H(2)'
n (k0 rout )} cos (nu) ejvt. (52)

The modal impedances of the incident wave and scattered wave on the exterior surface
are given by

Z0,n,i =−jr0 c0 (Jn (k0 rout )/J'n (k0 rout ), Z0,n,s =−jr0 c0 (H(2)
n (k0 rout )/H(2)'

n (k0 rout ).

(53, 54)

The standing wave pressure is equal to normal compressive stress: i.e.,

srr,0,n =P0,n . (55)

The corresponding relationships for the interior face are

Pm,n =Fn Jn (km+1 rin ) cos (nu), Vr,m,n =(jFn J'n (km+1 rin )/rm+1 cm+1) cos (nu), (56, 57)

Zm+1,n =−jrm+1 cm+1 (Jn (km+1 rin )/J'n (km+1 rin )), srr,m,n =Pm,n =Vr,m,n Zm+1,n , (58, 59)

where Zm+1,n is the modal impedance exerted on the interior surface. The function
cos (nu) ejvt is common for modal pressure and modal radial velocity on both the exterior
and interior faces, and therefore can be dropped henceforth for convenience of writing.

Substituting equations (50), (55) and (59) in the first of equations (49) yields

(A11 Zm+1,n +A14)Vr,m,n +A13 Vu,m,n =P0,n , (60)

and substituting equations (50), (52) and (59) in the second of equations (49) yields

(A21 Zm+1,n +A24)Vr,m,n +A23 Vu,m,n =0. (61)

Simultaneous solution of equations (60) and (61) yields

Vr,m,n =(P0,n /DEN)A23, Vu,m,n =−(A21 Zm+1,n +A24)P0,n /DEN, (62, 63)
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where

DEN= {A23 (A11 Zm+1,n +A14)−A13 (A21 Zm+1,n +A24)}. (64)

Substituting the values of Vr,m,n and Vu,m,n from equations (62) and (63) in the fourth of
equations (49): i.e.,

Vr,0,n =A41 srr,m,n =A43 Vu,m,n +A44 Vr,m,n , (65)

one obtains

Vr,0,n z=P0,n , (66)

where z represents the equivalent impedance of the complete passive sub-system consisting
of layers 1 to m (whose impedance is denoted by zL ) and the radiation impedance exerted
by the interior ambient fluid medium m+1 (whose impedance is denoted by Zm+1).

The equivalent impedance z= f(zL , Zm+1) is given by

z=
{A23 (A11 Zm+1,n +A14)−A13 (A21 Zm+1,n +A24)}
{A23 (A41 Zm+1,n +A44)−A43 (A21 Zm+1,n +A24)}

=
M1 +M2 /Zm+1

M3 +M4 /Zm+1
, (67)

where

M1 = (A11 −A13 A21 /A23), M2 = (A14 −A13 A24 /A23), (68a)

M3 = (A11 −A43 A21 /A23), M4 = (A44 −A43 A24 /A23). (68b)

Substituting equations (51) and (52) into equation (66) yields an expression for the
scattering coefficient bn :

bn = {r0 c0 Jn (k0 rout )− jzJ'n (k0 rout )}/{jzH(2)'
n (k0 rout )− r0 c0 H(2)

n (k0 rout )}. (69)

It can readily be shown that equation (69) would be identical to the corresponding
expression for the scattering coefficient in reference [3] if equivalent notation and
co-ordinate transformation were used, and if the forms of equations (16) and (17) were
the same as used in reference [3].

Upon making use of the expressions of modal incident and scattered wave impedances
and surface impedances on the interior surface given in equations (53), (54) and (58),
equation (69) turns out to be

bn =[J'n (k0 rout )/H(2)'
n (k0 rout )]V, (70)

where

V=−(z−Z0,n,i )/(z−Z0,n,s ). (71)

Substitution of the expression of scattering coefficient given in equation (70) into equation
(17) yields the expression for scattered pressure as

Ps = s
a

n=0

on (−j)n J'n (k0 rout )
H(2)'

n (k0 rout )
VH(2)

n (k0 rout ) cos (nu). (72)

In the far field, upon making use of the asymptotic representation for the Hankel function
of second kind given in reference [21], one finds

H(2)
n =(2/pk0 r)0·5 exp{−j(k0 r− np/2− p/4)}. (73)
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The far field scattered pressure in equation (72) is given by

Ps =0 2j
pk0 rout 1

0·5

exp(−jk0 rout ) s
a

n=0

on bn cos (nu). (74)

Now, the scattering form function is defined as [12]

=fa == 2
(pk0 rout )0·5 b san=0

on bn cos (nu)b. (75)

For the case of monostatic back scattering, u= p, making cos (np)= (−1)n, the expression
for the scattering form function becomes

=fa == 2
(pk0 rout )0·5 b san=0

on bn (−1)nb. (76)

Substituting the expression for the scattering coefficient bn in equation (51), and making
use of equations (56–59), one obtains

Fn = {Jn (k0 rout )+ bn H(2)
n (k0 rout )}

A23 Zm+1

DENJn (km+1 rin )
. (77)

Substitution of this expression into equation (18) yields the pressure field transmitted
through the shell:

Pm+1 = s
a

n=0

on (−j)n{Jn (k0 rout )+ bn H(2)
n (k0 rout )}

A23 Zm+1,n

DEN
cos (nu). (78)

The noise reduction achieved by the cylindrical shell is given by

NR=20 log10 b(Pi +Ps )
Pm+1 b=20 log10

×G
G

G

K

k

G
G

G

G

G

s
a

n=0

on (−j)n{Jn (k0 rout )+ bn H(2)
n (k0 rout )} cos (nu)

s
a

n=0

on (−j)nFn Jn (km+1 rin ) cos (nu)

G
G

G

G

G

G
G

G

L

l

. (79)

For the case of monostatic back scattering, u= p, making cos(np)= (−1)n, the expression
for noise reduction becomes

NR=20 log10 b(Pi +Ps )
Pm+1 b=20 log10

G
G

G

K

k

G
G

G

G

G

s
a

n=0

on (−j)n{Jn (k0 rout )+ bn H(2)
n (k0 rout )}(−1)n

s
a

n=0

on (−j)nFn Jn (km+1 rin ) (−1)n

G
G

G

G

G

G
G

G

L

l

. (80)
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Some of the interesting particular cases of scattering can be drawn from the expression
for the scattering coefficient given in equation (70).

In the expression for V, if the equivalent impedance characterized by z is very high
compared to that of the modal impedance of the incident and scattered waves Z0,n,i and
Z0,n,s (z�Z0,n,i and Z0,n,s ), the scattering function would correspond to a rigid cylinder whose
scattering coefficient is given by

bn =−J'n (k0 rout )/H(2)'
n (k0 rout ). (81)

On the other hand, if z�Z0,n,i and Z0,n,s , then the scattering function relates to a soft
cylinder whose scattering coefficient is given by

bn =−Jn (k0 rout )/H(2)
n (k0 rout ). (82)

The case of scattering by a fluid cylinder can be obtained if one lets rin:rout , in the elements
Ai j of the transfer matrix equation (49), which implies the absence of the multi-layer filter,
and incidence of the wave on the interface of the exterior and interior fluids. In this case,
as expected, the transfer matrix reduces to a unit matrix:

K L K L K Lsrr,0,n 1 0 0 0 srr,m,n

G G G G G Gtru,0,n 0 1 0 0 tru,m,nG G G G G G
Vu,0,n

=
0 0 1 0 Vu,m,n

. (83)
G G G G G G

Vr,0,n 0 0 0 1 Vr,m,nk l k l k l
Substitution of elements Ai j of this matrix into equation (67) yields the equivalent
impedance as

z=Zm+1, (84)

which confirms the absence of contribution of the impedance of the multi-layers to the
equivalent impedance. Substitution of equation (84) into equation (69) yields an expression
for the scattering coefficient for the case of a fluid cylinder:

bn = {r0 c0 Jn (k0 rout )− jZm+1 J'n (k0 rout )}/{jZm+1 H(2)'
n (k0 rout )− r0 c0 H(2)

n (k0 rout )}. (85)

Equation (85) has been found to be identical to equation (13a) of reference [3], which in
fact necessitated evaluation of the determinant with the elements presented in the reference
cited, after the forms of equations (16) and (17) were changed to those of reference [3].
It may be noted that the denominator in equation (85) contains Hankel functions of the
second kind, and derivatives thereof, as the outgoing waves are represented by H(2)

n (k0 r),
to be consistent with the time dependence exp(jvt) adopted in this paper.

The case of scattering from a solid cylinder can also be obtained from the transfer matrix
equation (49). In this case, the elastic medium includes the origin, necessitating the
condition of Bn =Dn =Fn =0, to cater for the absence of Neumann functions. With this
condition, and applying the limits [21]

lim
z:0

Jn (z)3 (z/2)n/G(n+1), lim
z:0

Y0 (z)3 (2/p) ln (z), (86a, b)

lim
z:0

Yn (z)3 (1/p)G(n) (z/2)−n, (86c)

each of the matrix elements of equation (46) (see Appendix A) now contain only the terms
having the Bessel functions of the first kind and its derivatives. Substitution of the elements
Ai j of this reduced matrix into the equation for equivalent impedance and scattering
coefficient given by equations (67) and (69), respectively, and noting the absence of
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radiation impedance exerted by the interior fluid Zm+1, yields the following expressions
for the equivalent impedance and scattering coefficient:

z=
{A23 A14 −A13 A24}
{A23 A44 −A43 A24}

, bn =
{r0 c0 Jn (k0 rout )− jzJ'n (k0 rout )}
{jzJ'n (k0 rout )− r0 c0 Jn (k0 rout )}

. (87, 88)

The elements Ai j required to calculate the scattering coefficient for the particular case of
solid cylinder are given in Appendix B.

Equation (88) has been verified to be identical to equations (12a, b) of reference [3],
which again necessitated evaluation of the determinant with the elements presented in the
reference cited.

5. RESPONSE OF THE MULTI-LAYERED CYLINDER TO EXTERNAL EXCITATION

The transfer matrix relation (49) can be used to evaluate the radial velocities at the two
exposed surfaces of the multi-layer cylinder excited by an incident plane wave, or
alternatively to evalute the acoustic pressure distribution excited by the radial velocity
components of the radiating surfaces.

Let the modal external excitation on the exterior of the first layer have the distribution

P0,n = {Jn (k0 rout )+ bn H(2)
n (k0 rout )} cos (nu). (89)

The resulting compressive stresses at the exposed surfaces r= rin and r= rout are given by

srr,n,0 =P0,n −Z0,n Vr,0,n , srr,n,m =Zm+1,n Vr,m,n , (90, 91)

where Z0,n and Zm+1,n are the modal radiation impedances exerted by the ambient medium
in contact when the first layer and mth layer, respectively (see equations (53), (54) and
(58)). If the ambient media are fluids, they would not support any shear stresses. Then

tru,0,n = tru,m,n =0. (92)

By substituting the four boundary conditions (90–92) in the four equations of the
transfer matrix equation (49), one can derive expressions for the radial velocities at the
two exposed surfaces as follows. Making use of equations (90–92) and the first and fourth
of equations (49) yields

P0,n −Z0,n Vr,0,n =(A11 Zm+1,n +A14)Vr,m,n +A13 Vu,m,n , (93)

Vr,0,n =(A41 Zm+1,n +A44)Vr,m,n +A43 Vu,m,n . (94)

Substituting equation (94) in equation (93) yields

Vu,m,n =[P0,n −Vr,m,n (Z0,n M41 +M11)]/(A13 +Z0,n A43). (95)

Substituting equation (95) into the second of equations (49), and simplifying, one obtains

Vr,m,n =(A23 /DEN)P0,n , (96)

where

DEN= {−(A13 Z0,n +A43)M21 + (M41 Z0,n +M11)A23}, (97)

M11 =A11 Zm+1,n +A14, M21 =A21 Zm+1,n +A24, M41 =A41 Zm+1,n +A44. (98a–c)

Simultaneous solution of equations (93) and (94), and simplification, yields

Vr,0,n = {A43 −A23 (A43 M11 −A13 M41)/DEN}P0,n /(A13 +Z0,n A43). (99)
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T 1

Material constants

Material Density (r) Modulus of elasticity (E) Poisson’s ratio (m)

Elastomer layer 1200 3·3×108(1+ j0·8) 0·49
Backing steel layer 7800 2·1×1011(1+ j0·002) 0·31

T 2

Ambient media constants

Ambient medium Density (r) Speed of sound (c0)

Sea water 1025 1500
Air 1·18 340

Figure 3. Effect of the cylinder wall composition on the scattering form function. ——, Elastomer; — —, steel;
· · · · , composite.

6. NUMERICAL RESULTS

In order to illustrate the use of the transfer matrix developed to evaluate the scattering
coefficient and noise reduction of a multi-layer infinite cylinder, for the case of normal
incidence and one-dimensional pressure excitation, several numerical examples are
presented. Unless otherwise specified, the configuration chosen is a two-layer infinite
cylinder consisting of a carbon steel inner cylinder of 5 mm thickness lined with an outer
elastomer cylindrical layer of 5 mm thickness. All the results are shown for the frequency
range that is typical of the underwater acoustic applications for which the present model
is primarily expected to be used. Default values of the outer and inner radius of the
multi-layer cylinder are rout =100 mm and rin =90 mm (rout =100 mm and rin =95 mm for
the elastomer cylinder, and rout =95 mm and rin =90 mm for the steel cylinder). Water and
air are considered as the ambient medium outside and inside of the two-layer cylinder,
respectively. The x-co-ordinate krsh0 k0 rout in all the figures.

Values of density (in kg/m3), Poisson’s ratio and elastic modulus (in Pa) for the two
constituent layers are given in Table 1. The presence of structural damping represented
by a loss factor would make E and G and thence cL and cT , or kL and kT , complex, which
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Figure 4. Effect of the cylinder wall composition on noise reduction. ——, Elastomer, — —, steel; - - - - ,
composite.

would make the arguments of the Bessel functions of all three kinds complex. The series
representations for Bessel functions [21] are used in the computations.

Values of density and speed of sound (in m/s) for sea water and air (which are ambient
media) are given in Table 2.

Figures 3 and 4 show the scattering form function and noise reduction for various layer
configurations, respectively. Results are plotted for the cases of elastomer cylinder
(rout =100 mm and rin =95 mm), backing steel cylinder (rout =100 mm and rin =95 mm),
and combination of the two (lined cylinder, rout =100 mm and rin =90 mm). It can be
observed from Figure 3, that there exist three regions of the scattering form function = fa =.
Region I comprises high and low values of = fa = for the elastomer cylinder and steel cylinder
cases, respectively, up to a frequency of 10 kHz (krsh0 k0 rout =4·0). Region II is

Figure 5. Effect of the elastomer lining thickness on the scattering form function. ——, Unlined; — —,
th=5 mm; · · · · , th=10 mm.
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Figure 6. Effect of the elastomer lining thickness on noise reduction. ——, Unlined; — —, th=5 mm, - - - - ,
th=10 mm.

characteristic of structural resonances of metal or elastomer. There is a relative rise and
fall in = fa =, for elastomer cylinder and steel cylinder, respectively. Beyond 45 kHz
(k0 rout q 18·0), not shown here, there is a rapid fall in = fa = for all the three cases, and this
region can be identified as Region III. As can be seen from Figure 4, there is an increase
in the noise reduction for all the three cases. For the remaining curves, the non-dimensional
frequency parameter krsh0 k0 rout has been restricted to 5·0 (corresponding to about
12 000 Hz).

The effect of varying the thickness of elastomer layer on the scattering form function
and noise reduction is shown in Figures 5 and 6, respectively, wherein the elastomer layer
thickness is varied from 0 mm (which means backing steel cylinder alone) to 10 mm. The
presence and variation of thickness of elastomer layer shifted the high amplitude

Figure 7. Effect of the steel backing layer thickness on the scattering form function. ——, No backing; — —,
th=5 mm; · · · · , th=10 mm.
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Figure 8. Effect of the steel backing layer thickness on noise reduction. ——, No backing; – – –, th=5 mm.

resonances to relatively higher frequencies for both the scattering form function and noise
reduction accompanied with slight changes in their values as the thickness is progressively
varied.

The effect of varying the thickness of the backing steel cylinder on the scattering form
function and noise reduction is presented in Figures 7 and 8. With increase in the thickness
of the steel cylinder, more or less the same phenomenon as that of the increase in the
elastomer layer is observed for the high amplitude peak, except for the magnitude.

The effect of the ambient media on the scattering form function and noise reduction is
presented in Figures 9 and 10, respectively. While it is always water on the incidence side
or outer side, it could be either air or water on the transmission side or inside. While the
high frequency scattering behaviour is more or less the same for both the cases; the
scattering form function is less in the water–water closure configuration at lower

Figure 9. Effect of the ambient media on the scattering form function. ——, Water–air; – – –, water–water.
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Figure 10. Effect of the ambient media on noise reduction. ——, Water–air; – – –, water–water.

frequencies. For the water–water case, the impedance mismatch is much weaker and this
leads to very low values of noise reduction.

The effect of varying the size of the cylinder, keeping the same thickness, on the
scattering form function and noise reduction is presented for two different sizes of metallic
cylinder for krsh=0–5 in Figures 11 and 12, and for a frequency range of 0–6000 Hz in
Figures 13 and 14. In these figures, comparison is made between a smaller cylinder
(rout =100 mm) and a larger cylinder (rout =250 mm). With increase in the radius, there is
a shift of structural resonances towards lower frequencies as can be observed from
Figure 14. This does not appear in the corresponding Figure 12 where the outer radius
rout is included in the non-dimensional frequency parameter or Helmholtz number in the
abcissa.

Figure 11. Effect of outer radius of an unlined steel cylinder on the scattering form function. ——,
rout =100 mm; – – –, rout =250 mm.
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Figure 12. Effect of outer radius of an unlined steel cylinder on its noise reduction. ——, rout=100 mm; – – –,
rout =250 mm.

There are hoses like those used in automotive climate control systems where the hose
wall is made up of four layers of different types of elastomers or polymers. The transfer
matrix method can tackle this four-layer cylindrical hose with equal ease. Results are
shown are Figures 15 and 16 for the two configurations shown in Table 3. Each of the
four layers in either configuration is 5 mm thick. The outermost radius is 100 mm as for
the previous cases. The medium is air on the outside as well as inside.

It may be observed from Figure 15 that reversing the order of the layers has little effect
on the scattering form function, where the two curves are completely overlapping. This
is typical of the symmetrical nature of impedance mismatch, as shown for sudden
expansion and contraction in reference [18] and for change in media in reference [20].
However, the curvature effect of the cylindrical surfaces produces considerable differences

Figure 13. Effect of outer radius of an unlined steel cylinder on the scattering form function. ——,
rout =100 mm; – – –, rout =250 mm.
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Figure 14. Effect of outer radius of an unlined steel cylinder on its noise reduction. ——, rout=100 mm; – – –,
rout =250 mm.

in the noise reduction values as may be noted from Figure 16. This effect has also been
observed in the interchange of the rubber and steel layers, although it is not shown here.
Nevertheless, the primary purpose of Figures 15 and 16 is to show that the transfer matrix
method may be applied readily to any number of layers, where the classical approach
would be too cumbersome and susceptible to numerical instabilities.

7. CONCLUDING REMARKS

The transfer matrix presented here can be easily adapted to small or personal computers
to evaluate the response of a multi-layer cylinder excited by a plane wave with
one-dimensional pressure excitation. The overall transfer matrix elements can be obtained
by multiplying the transfer matrices of successive layers by feeding in the elastic properties
for the respective layers. Expressions are given for the evaluation of acoustic characteristics

T 3

Hose configurations

Storage
Poisson’s modulus Er

ratio m Density r (kg/m3) (Pa) Loss factor h

Configuration (a)
Layer 1 0·49 1200 3·3×107 0·8
Layer 2 0·47 1250 3·3×108 0·6
Layer 3 0·45 1300 3·3×109 0·4
Layer 4 0·43 1350 3·3×1010 0·2

Configuration (b)
Layer 1 0·43 1350 3·3×1010 0·2
Layer 2 0·45 1300 3·3×109 0·4
Layer 3 0·47 1250 3·3×108 0·6
Layer 4 0·49 1200 3·3×107 0·8
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Figure 15. Scattering form function of a four-layer hose. ——, Configuration (a); – – –, configuration (b).

Figure 16. Noise reduction of a four-layer hose. ——, Configuration (a); – – –, configuration (b).

of the multi-layer cylinder. Numerical examples have been presented to illustrate the
effect of type of layer, type of closure and variation of thickness of either of the
two constituent layers on scattering form function and noise reduction of a two-layer
cylinder.
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APPENDIX A

The elements of the transfer matrix of equation (46) are as follows:

A11 =
p

2 6−kL lrin Rn,L −
2rin

rout
Sn,L +

kT F
rout

Qn,T −
F
r2

out
Pn,T 7,

A12 =
p

2 6lnPn,L +
kL F
nrout

Qn,L −
k2

TFrin

nrout
Sn,T +

kT Frin

nr2
out

Rn,T 7,
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A13 =−
p

2
2G
jv 6−kL nlRn,L −

k2
LF

nrout
Sn,L + l

n
rin

Pn,L +
kL F

nrin rout
Qn,L −

k2
TF

nrout
Sn,T

− j
kT nrin

rout
Qn,T + j

nrin

r2
out

Pn,T +
kT F
nr2

out
Rn,T 7,

A14 =−
p

2
2G
jv 6−kL lRn,L −

k2
LF

n2rout
Sn,L −

k2
Trin

2
jlPn,L

−
kL rin

rout
jQn,L −

k2
TF

rout
Sn,T +

kT F
rin rout

Qn,T −
F

rin r2
out

Pn,T +
kT F
r2

out
Rn,T 7,

A21 =
p

2 6lnPn,T +
kL Frin

nr2
out

Rn,L −
k2

LFrin

nrout
Sn,L +

kT F
nrout

Qn,T 7,

A22 =
p

2 6−kT lrin Rn,T −
2rin

rout
Sn,T +

kL F
rout

Qn,L −
F
r2

out
Pn,L 7,

A23 =−
p

2
2G
jv 6−jl

k2
Trin

2
Pn,T − kT lRn,T +

kL F
r2

out
Rn,L

− j
kT rin

rout
Qn,T −

F
rin r2

out
Pn,L −

k2
LF

rout
Sn,L +

kL F
rin rout

Qn,L −
k2

TF
n2rout

Sn,T 7,

A24 = −
p

2
2G
jv 6kL F

nr2
out

Rn,L + j
nrin

r2
out

Pn,L −
k2

LF
nrout

Sn,L −
kL nrin

rout
jQn,L

−
k2

TF
nrout

Sn,T +
kT F

nrin rout
Qn,T − kT nlRn,T +

n
rin

lPn,T 7,

A31 =
p

2
jvn
Gk2

T 6kT Qn,T +
rin

rout
kL Rn,L 7, A32 =−

p

2
jv
Gk2

T 6k2
Trin Sn,T +

n2

rout
Pn,L 7,

A33 =
p

2 6−
kL F
rout

Rn,L +2Sn,T +
F

rin rout
Pn,L + jkT rin Qn,T 7,

A34 =
p

2 6−
kL F
nrout

Rn,L +
k2

TF
n

Sn,T −
kT F
nrin

Qn,T − j
nrin

rout
Pn,L 7,

A41 =−
p

2
jv
Gk2

T 6k2
Lrin Sn,L +

n2

rout
Pn,T 7, A42 =

p

2
jvn
Gk2

T 6kL Qn,L +
rin

rout
kT Rn,T 7,
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A43 =
p

2 6−
kL F
nrin

Qn,L +
k2

LF
n

Sn,L −
kT F
nrout

Rn,T − j
nrin

rout
Pn,T 7,

A44 =
p

2 62k2
L

k2
T

Sn,L + jkL rin Qn,L −
kT F
rout

Rn,T +
F

rin rout
Pn,T 7.

Here

Pn,L =Jn (kL rin )Yn (kL rout )−Yn (kL rin )Jn (kL rout ),

Qn,L =Jn (kL rin )Y'n (kL rout )−Yn (kL rin )J'n (kL rout ),

Rn,L =J'n (kL rin )Yn (kL rout )−Y'n (kL rin )Jn (kL rout ),

Sn,L =J'n (kL rin )Y'n (kL rout )−Y'n (kL rin )J'n (kL rout ),

Pn,T =Jn (kT rin )Yn (kT rout )−Yn (kT rin )Jn (kT rout ),

Qn,T =Jn (kT rin )Y'n (kT rout )−Yn (kT rin )J'n (kT rout ),

Rn,T =J'n (kT rin )Yn (kT rout )−Y'n (kT rin )Jn (kT rout ),

Sn,T =J'n (kT rin )Y'n (kT rout )−Y'n (kT rin )J'n (kT rout ),

j=(1−F/r2
in), l=(1−F/r2

out), F=2n2/k2
T.

APPENDIX B

The elements of Ai j required to calculate the scattering coefficient bn of equation (88)
for the case of a solid cylinder are as follows:

A13 =−
2G
jv 6kL lnJn (kL rout )+

k2
LF

nrout
J'n (kL rout )+

k2
TF

nrout
J'n (kT rout )−

kT F
nr2

out
Jn (kT rout )7,

A14 =−
2G
jv 6kL lJn (kL rout )+

k2
LF

n2rout
J'n (kL rout )+

k2
TF

rout
J'n (kT rout )−

kT F
r2

out
Jn (kT rout )7,

A23 =−
2G
jv 6kT lJn (kT rout )−

kL F
r2

out
Jn (kL rout )+

k2
LF

rout
J'n (kL rout )+

k2
TF

n2rout
J'n (kT rout )7,

A24 =−
p

2
2G
jv 6−

kL F
nr2

out
Jn (kL rout )+

k2
LF

nrout
J'n (kL rout )+

k2
TF

nrout
J'n (kT rout )+ kT nlJn (kT rout )7,

A43 =6−
k2

LF
n

J'n (kL rout )+
kT F
nrout

Jn (kT rout )7,

A44 =6−
2k2

L

k2
T

J'n (kL rout )+
kT F
rout

Jn (kT rout )7.

Here

l=(1−F/r2
out), F=2n2/k2

T.


